Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399238

RESUMO

Curcumin is a natural compound that has been widely investigated thanks to its various biological properties, including antiproliferative. This molecule acts on different cancers such as lung, breast, pancreatic, colorectal, etc. However, the bioactive actions of curcumin have limitations when its physicochemical properties compromise its pharmacological potential. As a therapeutic strategy against cancer, curcumin has been associated with inorganic nanoparticles. These nanocarriers are capable of delivering curcumin and offering physicochemical properties that synergistically enhance anticancer properties. This review highlights the different types of curcumin-based inorganic nanoparticles and discusses their physicochemical properties and in vivo anticancer activity in different models of cancer.

2.
Beilstein J Nanotechnol ; 15: 37-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213574

RESUMO

Leishmaniasis is a neglected tropical disease that has affected more than 350 million people worldwide and can manifest itself in three different forms: cutaneous, mucocutaneous, or visceral. Furthermore, the current treatment options have drawbacks which compromise efficacy and patient compliance. To face this global health concern, new alternatives for the treatment of leishmaniasis have been explored. Curcumin, a polyphenol obtained from the rhizome of turmeric, exhibits leishmanicidal activity against different species of Leishmania spp. Although its mechanism of action has not yet been fully elucidated, its leishmanicidal potential may be associated with its antioxidant and anti-inflammatory properties. However, it has limitations that compromise its clinical use. Conversely, nanotechnology has been used as a tool for solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1-1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded nanocarriers intended for the treatment of leishmaniasis.

3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569487

RESUMO

This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 µg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 µg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 µg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.


Assuntos
Antineoplásicos , Arecaceae , Melanoma , Nanogéis , Sistemas de Liberação de Fármacos por Nanopartículas , Óleo de Palmeira , Resveratrol , Resveratrol/administração & dosagem , Melanoma/terapia , Humanos , Linhagem Celular Tumoral , Nanogéis/administração & dosagem , Nanogéis/química , Arecaceae/química , Óleo de Palmeira/química , Sementes/química , Tamanho da Partícula , Antineoplásicos/administração & dosagem , Antineoplásicos/química
4.
Acta Cir Bras ; 37(6): e370602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976279

RESUMO

PURPOSE: To examine the effects of a negatively charged nanostructured curcumin microemulsion in experimental ulcerative colitis (UC) in rats. METHODS: Four percent acetic acid was used to induce UC. The animals were treated for seven days and randomly assigned to four groups: normal control (NC), colitis/normal saline (COL/NS), colitis/curcumin (COL/CUR), and colitis/mesalazine (COL/MES). The nanostructured curcumin was formulated with a negative zeta potential (-16.70 ± 1.66 mV). Dosage of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-ß (IL-1ß), interleukin 6 (IL-6), and antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase), macro and microscopic evaluation of the colon tissue were analyzed. RESULTS: The COL/CUR group had a higher level of antioxidant enzymes compared to the COL/MESgroup. The levels of TNF-α, IL-1ß and IL-6 were significantly lower in the colonic tissue of the COL/CUR group rats, when compared to the COL/NS and COL/MES groups (p < 0.001). The presence of ulcers in the colonic mucosa in rats of the COL/NSgroup was significantly higher than in the COL/MES group (p < 0.001). In the NC and COL/CUR groups, there were no ulcers in the colonic mucosa. CONCLUSIONS: The nanostructured microemulsion of curcumin, used orally, positively influenced the results of the treatment of UC in rats. The data also suggests that nanostructured curcumin with negative zeta potential is a promising phytopharmaceutical oral delivery system for UC therapy. Further research needs to be done to better understand the mechanisms of the negatively charged nanostructured curcumin microemulsion in UC therapy.


Assuntos
Colite Ulcerativa , Colite , Curcumina , Animais , Ratos , Antioxidantes/farmacologia , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , Curcumina/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA